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Sol is an open source machine learning toolkit implemented in C++. It is
based on stochastic gradient descent in a regularized risk minimization frame-
work. At the current state it implements binary, multi-class, and multi-label
classification; other classifiers are under development. Sol is designed with
tasks from computational linguistics in mind and therefore works especially
well with sparse data sets for which it scales up to billions of features. Com-
pared to other implementations Sol reaches state of the art results.

1 Introduction

Sol is an open sourceE] machine learning toolkit implemented in C++. It is based on
stochastic gradient descent (SGD) in the large margin regularized risk minimization
framework known from support vector machines (SVMs) [Vap98| [SS01]. Besides bi-
nary classification Sol implements multi-class classification ([WW299, (CS01l [SS01]) which
it solves as a structured prediction problem ([THJAO04]), and multi-label classification
([EW0I]) solved in a similar way.

This document is a summary of the theoretical background behind Sol from an im-
plementation perspective. It documents the state of Sol at it’s first public release and
serves as a background reference for potential users as well as for discussing further de-
velopment. The paper is organized as follows: Section [2| summarizes notation and basic
concepts. Section [3| explains the theoretical background of the algorithms and discusses
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some implementation details. Section [4| presents some experiments that have been car-
ried out to test functionality and to compare Sol to state of the art machine learning
software. Finally, section [5|is concerned with open issues and future work.

2 Preliminaries

Let S be a set. With B(S) we denote the power set, and with |S| the cardinality of S.
The Kronecker delta § : S x S — {0,1}, and the indicator functionf| I : S — {—1,+1}
of a subset A C S are given by

1 ifs= 1 if A
5oy = ts=t IA(S) — + if s e
0 ifs#t -1 ifs¢& A

For the real numbers we define the signum function sgn : R — {+1,0,—1} and the
hinge function (-)4 : R — R, which cuts off all negative values setting them to zero, by

+1 ifx>0
sgn(z) =<0 ifz=0 (r)4+ = max(0,x).
-1 ifx<0

Given a set X of objects and a set ) of classes (or class labels), a classifier is a
function f : X — Y. A (supervised) classification problem is given by the task of
learning an approximation h of an unknown classifier f from a given data sample
(1,91)y -+ (Tnyyn) € X X Y. h is also called a hypothesis for f. Depending on the
nature of ) we distinguish several types of classification problems:

Binary classification: |)| = 2. In this paper we always assume ) = {41, —1} which we
also write as {+, —} for short.

Multi-class classification: ) is finite. Here, we always assume ) = {1,...,k} for a
k € N. In contrast to the labels in multi-label classification, the classes are mutual
exclusive here.

Multi-label classification: Y C B(L) for a finite set £ of labels. In this paper we always
assume £ = {1,...,k} for a k € N. In contrast to the classes in multi-class
classification, several labels may be assigned to an object.

Regression: ) = R. In general, regression is not tractable. Therefore we will always
make additional assumptions to f having some nice properties, e.g. continuity.

Ranking: ) is an ordered set. In the language of preference ranking [F'HI0], this is
strictly speaking instance ranking. The terms bipartite ranking (in case |Y| = 2)
and multi-partite ranking are also used.

?Note that the indicator function is usually defined with a range of {0,1}. But, as we take most
decisions on the sign of some value, a range of {—1,+41} is more convenient for our purpose.



Structured prediction: ) is a possibly infinite set of structured objects. Typically, for
a given x there are many possible answers y from which we seek for the best.

The above problem types are not meant to be mutual exclusive, they rather describe
the main perspective on a given classification problem. Most of them have at least some
overlap, e.g. binary classification can be seen as a special case of all the others.

Given a set of training instances (x1,y1), ..., (Zn, yn) € X X ), the general regularized
risk minimization problem discussed in this paper is

1 n
minimize (w) + - ; (w, 74, y;) (1)

where the parameter vector w € W is a real vector parametrizing the hypotheses h,, € H,
Q:W — R(J{ is the regularizer, which is weighted by the non-negative, real-valued
reqularization parameter A, and [ : W x X x Y — ]Rar is a loss function quantifying
the loss of quality when predicting hy,(z;) for the true label y;. The combination of the
regularizer and the empirical risk (i.e. the average loss on the given data) serves as an
estimator of the true risk expected on the whole unknown data distribution.

Gradient descent (GD) is a class of iterative optimization techniques based on the
gradient of the objective function. GD algorithms can be applied to unconstrained
minimization problems if the objective function f is differentiable, and carried over to
weaker conditions as long as a reasonable subgradient can be chosen. The basic idea is
to iteratively make steps of reasonable size 1 in descent directions computed from the
current gradient as shown for the objective function of problem in algorithm

Algorithm 1 GD

1: fort=1,...,7T do

2:  choose n

3 w=w—nAVuQw) + > Vyli(w;x,y))
4: end for

Stochastic gradient descent (SGD) approximates true GD by computing the gradient
for a single instance (z;,y;) in each step (cf. algorithm . Although being a rough
approximation, in each iteration SGD touches only one training instance, while GD has
to iterate over the whole data sample (x1,91),..., (Zn,yn) to compute the sum in line
of algorithm [I} That is, after having touched n examples, SGD has made n updates,
while GD has only made one (with approximately the same computational cost). This
may lead to faster converging rates for SGD.

3 Algorithms

This section presents the concrete instances of algorithm [2| for the different problem
types, by giving the gradients of the loss functions used in the update rule (line [4)).

Sol is placed in the realm of linear discriminant functions hy,,(z) = sgn({w, ) +b),
where the parameter vector (w,b) is formed of the weight vector w € R? and the bias



Algorithm 2 SGD
1: fort=1,...,7T do
2:  choose i € {1,...,n} at random
3:  choose n
4 w=w—nAV,Qw) + Vyli(w; z:,4;))
5: end for

term b € R. That is, X = R? for some d € N, and the hypotheses are functions of the
form h,,p or combinations of such functions.

Regarding the regularizer, Sol gives the choice between Li- and Lo-regularization, i.e.
between

d
D (w) = [Jwl[y = Y wil (2)
i=1

d
1
(w) = [wllf =) _w}. (3)
i=1

While Qs is differentiable and therefore gives us a true gradient, we have to choose a
reasonable subgradient for {21, which is not differentiable in 0. We have:

Vi (w) = (sgn(wy), ..., sgn(wg)) (4)
VuSa(w) = w. (5)

The loss function /;(b, w) is based on the hinge loss

L (w,b) = (1= yi((w, z5) = b))+, (6)

but differs slightly depending on the type of the classification problem. Details are shown
below. The hinge loss allows to transform the constrained SVM-optimization problem
into an unconstrained optimization problem which can be solved by gradient descent
techniques, due to convexity.

The general optimization problem that is solved by Sol is of the form

1 n
inimi AQ — li(w,b), 7
minimize (w) + - ;_1 (w,b) (7)
the individual differences are shown in the following subsections.

3.1 Binary Classification

The goal of binary classification is to learn a function that is able to discriminate between
two mutual exclusive classes y € {41, —1}. Our hypothesis space for binary classification



is parametrized by a single weight vector w = (w1, ..., wy) and a single bias term b. The
objective function for binary classification is that of the standard soft margin SVM:
. 1 &
SVMP™ (w, b) = A\Q(w) + - > (= yi((w, zi) + b)) (8)
i=1

As stochastic subgradient of the loss we choose

i —yi(wi, 1) i yi((w,z) +b) <1
Vwbl?m(w,b) _ Y (‘T ) Iy (<w z > + ) < (9)
' 0 else.

3.2 Multi-class Classification

Multi-class classification deals with the task of discriminating between a finite number
of mutual exclusive classes y € {1,...,k}. This problem can be solved with structured
prediction [THJAO4]. There are other possibilities, like one versus rest and one versus
one, which we don’t discuss in this paper. The hypothesis space for multi-class classifi-
cation is parametrized by |Y| weight vectors wy = (wy1, ..., wyq) and bias terms b,. The
objective function for the structured prediction variant is:

n
SVMES (w,b) = A Q(w,) + 2(1 — (wy; — wys, x;) — by, + by )y, (10)

yey =

where y* = argmax(wy, x;)
Y#Yi

The chosen stochastic subgradient of the loss is:

VZI-HC-SP(’LU ,b ) — _(5%’1’ - 5yy*)(l‘i, 1) if <wy¢ - wy*al'i) + byi - by* <1 (11)
’ vy 0 else

where y* = argmax(wy, z;)
YFYi

3.3 Multi-label Classification

The objective of multi-label classification is to assign non-exclusive labels [ € £ =
{1,...,k} to objects, which is equivalent to assigning subsets y € B(L). This problem
can be solved by learning a separate binary classifier for each label which can be combined
to a single objective function. The Hypothesis space for this task is parametrized by
|L| weight vectors w; = (w1, ..., wyq) and bias terms b,. The objective function for
multi-label classification is:

SVM™ (w,b) = XY~ Q(wy) + — ZZ (1 — I, (1)) ((wy, ) + br)) 4 (12)

lel i=1 el

where we chose the following subgradient:

vwl,blllml(U)l,bl) — y’< )(l. ) 1 yz( )((wl x > + l) < (13)
0 else.



3.4 Implementational Issues

Concerning the implementation, a key idea to the speed of Sol is the combination of
stochastic updates with a special data representation presented by [SSSSO7]:

The weight vector w is represented as a triple (v, o, ) where v is a vector and «, v are
scalars with w = aw and v = ||w||?. v is implemented as an array of floats (i.e. a dense
vector) to have the fastest possible random access. This representation consumes 4 MB
per million of features which easily scales to a billion features on a > 4 GB machine. v
is updated on each weight update such that we never need to iterate over w to calculate
its Lo-norm. With this representation, scaling w is done by just updating o and v. This
makes Lo-regularization cheap.

For the data vectors a sparse representation was chosen which only holds features
with a non-zero value. As all zero-values are irrelevant to the results of vector addition
and inner product we only need to iterate over the (sparse) data vector to calculate the
model score and the updates. The current implementation reads the whole data set into
memory to have fast access. Of course this can be a problem on large non-sparse data
sets. An extension for on-disk storage is planned, but currently not implemented.

Regarding Li-regularization, we face the problem, that it cannot be reduced to a
simple scaling of w. Here, applying the regularization update essentially means adding
or subtracting the regularization parameter A to/from each feature weight w; (for i =
1,...,d) depending on the sign of w;. As this process penalizes large feature weights
by driving w; towards 0, we also speak of applying the regularization penalty. We have
to iterate over the whole weight vector which is expensive if we have a large number
of features. To reduce the computational cost, it is possible to apply the regularization
penalty only every n-th update. Note that this should be combined with a different
value for A. Furthermore, as long as |w;| < A, applying the regularization penalty at
each update would make w; oscillate between two values which is not desirable. To
prevent this behavior we use the simplest form of truncated gradient descent ([LLZ09]),
and truncate w; to 0 if |w;| gets smaller than \.

3.5 Meta-Parameters

The number of updates T' can be chosen as a fixed number in advance. Same for the
greatest possible feature id, which can also be estimated from the greatest feature id in
the training set. The learning rate n (cf. algorithm [2)) can be chosen as a fixed number,
or as a decreasing number as in [SSSS07]. Additionally, the ball-projection described
in the same paper is optionally available for binary classification. The regularization
parameter A can be set to a fixed number, if set to zero the regularizer component is
switched off totally. As described earlier, it is possible to choose between Li- and Lo-
regularization, and a regularization interval can be set to apply regularization every n
updates, only.



SVM light

Figure 1: Separating hyperplanes on binary testing data set.

4 Experiments

For testing and evaluation purposes Sol has been applied to the following data sets:
Testing: A very small artificial data set.

Sentiment: A multi-domain sentiment classification data set.

CLTE: SemEval-2012 task on cross lingual textual entailment.

MLcomp: Various data sets on the MLcomp platform.

Regarding the testing, sentiment, and CLTE data sets Sol was compared to the widely
used state of the art machine learning tool SVM”ght [Joa02, [Joa99], reaching comparable
accuracy results.

4.1 Testing Data Set

The testing data set (testing) is a very small, artificial data set for testing and debugging
purposes. It was manually generated and comes in a binary and a ternary version. Due to
its small size the learning process and the results can easily be checked and backtracked
manually. Figure [1] shows a comparison between Sol and SVM/"  Figure [2| shows
the model hyperplanes and the effective class boundaries, which are given by the angle
bisectors between the hyperplanes.

4.2 Sentiment Classification

[BDP07] have collected a multi-domain sentiment classification data setﬂ which was
taken to compare Sol’s performance with SVM®"  The data set consists of the four

3http://svmlight.joachims.org/
“http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Figure 2: Model hyperplanes (dashed) and class boundaries (continuous) on ternary test-
ing data set. Positive halfspaces are marked with c, s, and t for circles, squares,
and triangles (Sol structured prediction multi-class).

training set 1 2 4 5 total
books 1106 1147 1088 1059 4400
dvd 1050 1001 1014 1029 4094
electronics 1166 1180 1194 1180 4720
kitchen 1039 1053 1005 1022 4119
test set 1 2 4 5 total
books 280 253 293 275 1101
dvd 271 243 259 251 1024
electronics 302 286 289 304 1181
kitchen 261 260 257 252 1030

Table 1: Sentiment classification: number of instances by stars.

domains books, dvd, electronics, and kitchen. The data vectors are built from unigram
and bigram counts of product reviews and are rated with one or two stars for negative
sentiment, and four or five stars for positive sentiment. The data set is nearly balanced,
the sizes of the four domains are given in table

Three systems have been trained — SVMW9" regression, SVM¥" binary, and Sol
binary — on each domain individually as well as on all domains at once. The systems
were evaluated separately on each domain. Table [2] shows that the systems perform
comparably.

4.3 Cross-lingual Textual Entailment

The SemEval 2012 Cross-lingual Textual Entailment task [NMM™12] was to recognize
the presence of semantic entailment between two sentences F and F' from different
languages. The question here is if the meaning of F' follows from the meaning of F



training SVM? "% regression SVM?"* binary Sol binary

1 test— b d e k b d e k b d e k
books 813 .79 720 .741 | 814 760 717 .737 | .830 .796 .763 .775
dvd 787 801 .v68 .773 | .777r .801 .766 .780 | .787 .828 .774 .783
electronics | .738 .744 .848 .868 | .727 .741 839 .855 | .724 .766 .851 .844
kitchen 723 .766 .848 .888 | .717 .745 .842 876 | .717 .752 .853 .88l
all 832 .846 .885 .895 | .833 .828 875 .893 | .845 .860 .880 .886

Table 2: Sentiment classification: accuracy of different systems with best results in bold.

and vice versa, which we write as £ — F (E entails F') and F — FE, respectively.
This leads to the four possible entailment relations bidirectional, forward, backward,
and no entailment. For each of four language pairs (english-spanish, english-italian,
english-french, and english-german) a training set with 500 sentence pairs was provided.
The participating systems were evaluated on additional 500 sentence pairs. We applied
SVM%“htin two and Sol in three different variants to features extracted from this data:

e Multi-class classification with the four entailment directions as classes. (Sol and
SVMlight)

e Multi-label classification with forward and backward entailment as labels, which
are interpreted as bidirectional if both labels are predicted and as no entailment if
no label is predicted. (Sol)

e multi-label classification as above, but each label was predicted by a separately
trained binary classifier. (Sol and SVM¥9")

The features as well as the official results are reported in an upcoming paper [WE12].
The results of Sol and SVM"“"*are comparable.

4.4 MLcomp

MLcompﬁ is an online platform for the comparison of machine learning tools and data
sets. Any user can upload programs and data sets, and can run any available program
on any available data set. We uploaded Sol for binary classification. Although promising
compared to other linear classifiers, we don’t report results here, because they are under
constant change. This is due to data sets being added and deleted, new runs being
submitted etc. Especially, each time a program is updated, all runs of the program are
deleted. The current results of Sol are found at http://mlcomp.org/programs/1017.

5 Future Work

There are several open issues with the current implementation which are documented
as // TODO: ... comments in the source code. Of special interest for users is that the

Shttp://mlcomp.org/
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multi-label learner is currently limited to a small number of labels. The input format
was not intended to provide multiple labels. As a fast hack, a set of labels is encoded
bitwise as an 32-bit integer, each bit indicating the presence (1) or absence (0) of the
corresponding label. Therefore, multi-label classification is currently limited to 32 labels,
yielding to up to 232 possible label combinations. There are multi-label data sets with
hundreds or thousands of labels, so this is in fact an issue.

Furthermore, it is planned to extend Sol with different classifiers and features, as
pairwise ranking, regression, online learning, multi-task learning, on-disk storage for
large data sets, implicit parameter tuning, different feature selection techniques, sparse
representations for very large models, and more.
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