
Value-Passing Modal Interface Automata

Sascha Fendrich

July 12, 2017

Abstract

Interface theories based on de Alfaro and Henzinger's Interface Automata (IA) provide
a compositional, re�nement-based approach to the design of concurrent software systems.
However, their uniform interaction model is unsuitable for representing data when transition-
ing towards implementation. We extend Holík et al.'s value-passing IA, where values of local
variables may be passed between components, to the richer interface theory Error-preserving

Modal Interface Automata (EMIA). The resulting interface theory vpEMIA supports nonde-
terminism and modal transitions in the spirit of Larsen's Modal Transition Systems. We also
discuss the di�culties of supporting further standard interface-theoretic operations such as
hiding, quotient, conjunction and alphabet extension and conclude that the current state-of-
the-art of value-passing interface theories is insu�cient for supporting the full expressiveness
of recent interface theories.

1 Introduction and Related Work

Interface theories combining de Alfaro and Henzinger's Interface Automata (IA) [7] and Larsen's
Modal Transition Systems (MTS) [13] are a well-studied family of speci�cation theories providing
a compositional, re�nement-based approach to the design of concurrent software systems, e.g.,
[3, 4, 7, 9, 12, 14]. Such modal interface theories usually employ a uniform interaction model
where an action is considered to be an atomic unit. However, when transitioning from design to
implementation, one wishes to also model data.

In this report, we address data modelling by presenting a value-passing variant of the interface
theory Error-preserving Modal Interface Automata (EMIA) [8, 9]. As a ground semantics, we
enrich EMIA by transition labels that include data values yielding the theory EMIA with data
(EMIAD). We also de�ne the abstract theory value-passing EMIA (vpEMIA) in order to be able
to represent EMIADs over in�nite data domains �nitely. In addition, parallel composition can
be computed and re�nement can be checked on the abstract representation.

Value-passing is not a new idea, e.g., Cleaveland and Yankelevich have presented a value-
passing variant of CCS [5]. In contrast to our goal of specifying component interfaces, Cleaveland
and Yankelevich focus on providing an e�ective operational semantics. Hence, their work could
serve as a practical implementation of our ground semantics. Our work is based on Holík et
al.'s [10] value-passing version of IA. We extend their ideas to the richer interface theory EMIA,
where we support must- and may-transitions, disjunctive must-transitions and nondeterminism.

A di�erent approach to supporting data is based on shared-memory communication. This has
been investigated for MTS [2], as well as for interface theories such as IA [6] and Bauer et al.'s
MIO [1]. Further, behavioural type theories similar to session types [11] may also be adapted to
interface theories, as we have shown in [8] for IA. Such a behavioural type theory could also be
grounded with a value-passing semantics.

1



2 Basic De�nitions

In this section we de�ne the ground semantics Error-preserving Modal Interface Automata with
Data (EMIAD) and the abstract representation value-passing EMIA (vpEMIA). Throughout the
remainder of this paper, we employ the following notation: given sets X, Y , we write X + Y for
the disjoint union ({0}×X, {1}× Y ) and Y X for the set of all functions f : X → Y . We denote
the powerset of a set X by P(X). Further, we write t[x/y] for the substitution of x for a variable
y in a term t. We recap the de�nition of EMIA:

De�nition 1 (Error-preserving Modal Interface Automaton [8, 9]). Let P := (SP , IP , OP , P

, P , S
0
P , UP , EP ) be a tuple, where SP is a set of states, IP and OP are the alphabets of input

and output names (we de�ne AP := IP ∪ OP ), P ⊆ SP × AP × P(SP ) is the disjunctive
must-transition relation, ⊆ SP × AP × SP the may-transition relation, S0

P ⊆ SP the set of
initial states, UP ⊆ SP the set of universal states and E ⊆ SP the set of error-states. We call P
an Error-preserving Modal Interface Automaton (EMIA) if

1. IP and OP are disjoint,

2. EP and UP are disjoint,

3. states in EP ∪ UP have no outgoing transitions,

4. p
a
P P

′ implies ∀p′ ∈ P ′. p a
P p
′.

EMIAs may be extended by data values in the following way:

De�nition 2 (Error-preserving Modal Interface Automaton with Data). Let S be a set of sorts
and D :=

∑
σ∈S Dσ the disjoint union of a family (Dσ)σ∈S of sets, called the data domain.

Further, let I, O be disjoint sets of input and output actions. An Error-preserving Modal
Interface Automaton with Data (EMIAD) over D, I and O is an EMIA P , where IP := I ×D
and OP := O ×D.

In general, the data domain D may be in�nite. Therefore, we de�ne an abstraction of EMIADs
that may represent in�nite EMIADs �nitely. To this end, we need to de�ne valuations and guards
�rst.

De�nition 3 (Valuations). Given a data domain D and a �nite set X of variables, a valuation
is a function v : X → D. We denote the set of valuations over D and X by DX .

De�nition 4 (Guards). Let X be a �nite set of variables and D a data domain. A guard over X
and D is a Boolean expression over X, D. We write v � g if a guard g evaluates to true under
valuation v.

De�nition 5 (Value-passing EMIA). Let D be a data domain, X a �nite set of local variables
and I, O be disjoint sets of input and output names. A value-passing EMIA (vpEMIA) is
an EMIA P with actions of the form [g]a†ξσ; ~x := ~e where, for some k, n ∈ N and a formal
parameter ξ of sort σ,

1. a ∈ A,

2. † = ? if a ∈ I, and † = ! if a ∈ O,

3. g is a guard over X, D and the formal parameter ξ,

4. ~x := (x1, . . . , xn) is a vector of (local) variables x1, . . . , xn ∈ X,

2



P : p0 p1
[x = ξ]a!ξσ;x := x

Q: q0 q1
[true]a?ξσ; y := ξ

Figure 1: Process P sending and process Q receiving a value on channel a.

5. ~e := (e1, . . . , en) is a vector of expressions over X, D and the formal parameter ξ.

We illustrate the intuition behind value-passing EMIAs by means of the example shown in Fig. 1;
a formal de�nition is given below. Speci�cation P in Fig. 1 models a process P that sends the
value of its local variable x on channel a. The type of this value is σ. The guard [x = ξ] requires
that the local variable x and the formal parameter ξ evaluate to the same value; otherwise, the
action a!ξσ is not available. The assignment x := x indicates that P 's local variable x does
not change when the action is performed. Speci�cation Q models a process that is ready to
receive a value of type σ on channel a and, if so, binds the received value to Q's local variable
y. The guard [true] indicates that Q's readiness is unconstrained, the readiness itself is speci�ed
by action a?ξσ. With the assignment y := ξ, the received value is bound to variable y. Note
that, in the tradition of interface automata, the action types input (?) and output (!) do not
model the data �ow direction. An output encodes that the component may actively engage in
an action while an input speci�es that a component is able to reactively participate in an action.
The data �ow direction is encoded in the guards and the assignments.

We give vpEMIA the following EMIAD semantics:

De�nition 6 (Semantics of a vpEMIA). A vpEMIA P over D, X, I and O represents the
EMIAD [[P ]] given as follows:

1. S[[P ]] := SP ×DX ,

2. I[[P ]] := I ×D,

3. O[[P ]] := O ×D,

4. S0
[[P ]] := S0

P ×DX ,

5. (p, v)
a†d−−→[[P ]] P̄ i� p

[g]a†ξσ;~x:=~e−−−−−−−−→P P ′, with d ∈ Dσ, P̄ = {(p′, v′) | p′ ∈ P ′, v′(xi) =
ei[d/ξ], i = 1, . . . , n} and v � g[d/ξ].

Hence, the semantics of a vpEMIA P is an EMIAD, where a state (s, v) is a pair consisting of a
location s ∈ SP expressing the current behavioural state and a valuation v ∈ DX expressing the
state of P 's local variables. A transition is present if and only if its guard evaluates to true and
the valuation changes from the source to the target state according to the assignment ~x := ~e.

3 Re�nement

Concerning the ground semantics EMIAD, we directly employ EMIA-re�nement that is based
on modal re�nement [13], as is standard in modal interface theories. Intuitively, modal re�ne-
ment requires one to preserve must-transitions, whereas a may-transition in a re�ned interface
speci�cation must already be permitted in the coarser speci�cation.

De�nition 7 (EMIA Re�nement [8, 9]). Let P := (SP , I, O, P , P , S
0
P , UP , EP ) and Q :=

(SQ, I, O, Q, Q, S
0
Q, UQ, EQ) be EMIAs sharing the same alphabets I and O. A relation

R ⊆ SP × SQ is an EMIA re�nement relation if, for all (p, q) ∈ R,

3



1. p ∈ EP i� q ∈ EQ,

2. p ∈ UP implies q ∈ UQ,

3. q
a
Q Q′ implies ∃P ′ ⊆ SP . p

a
P P

′ ∧ ∀p′∈P ′.∃q′∈Q′. (p′, q′) ∈ R,

4. p
a
P p
′ implies ∃q′∈SQ. q

a
Q q′ ∧ (p′, q′) ∈ R.

We write P v Q if there is an EMIA re�nement relation R such that, for all p ∈ S0
P , there is a

q ∈ S0
Q with (p, q) ∈ R.

Such a standard notion of re�nement is not computable on in�nite data domains, i.e., on the
abstract level of vpEMIA a more abstract de�nition of re�nement is required:

De�nition 8 (vpEMIA Re�nement). Let P := (SP , I, O, P , P , S
0
P , UP , EP ) and Q :=

(SQ, I, O, Q, Q, S
0
Q, UQ, EQ) be vpEMIAs with equal alphabets and sets of local variables

X and Y , respectively. A relation R ⊆ SP × SQ is a vpEMIA re�nement relation if, for all
(p, q) ∈ SP × SQ,

1. p ∈ EP i� q ∈ EQ,

2. p ∈ UP implies q ∈ UQ,

3. q
[h]a†ξσ ;~y:=~f−−−−−−−−→ Q′ implies some P ′, g, ~x,~e such that

• p [g]a†ξσ ;~x:=~e−−−−−−−−→ P ′,

• ∀d∈Dσ, v∈DX , w∈DY . h[d/ξσ, w(~y)/~y] =⇒ g[d/ξσ, v(~x)/~x],

• ∀p′∈P ′.∃q′∈Q′. (p′, q′) ∈ R,

4. p
[g]a†ξσ;~x:=~e−−−−−⇒ p′ implies some q′, h, y, f such that

• q [h]a†ξσ ;y:=f−−−−−⇒ q′,

• ∀d∈Dσ, v∈DX , w∈DY . g[d/ξσ, v(~x)/~x] =⇒ h[d/ξσ, w(~y)/~y],

• (p′, q′) ∈ R.

We write P vvp Q if there is a vpEMIA re�nement relation R such that, for all p ∈ S0
P , there is

a q ∈ S0
Q with (p, q) ∈ R.

Intuitively, vpEMIA re�nement mimics EMIA re�nement on the abstract level by requiring the
implications between guards in rules 3 and 4. We justify this intuition by proving the following
proposition:

Proposition 9 (Monotonicity of Interpretation). If P , Q are vpEMIAs, then P vvp Q implies
[[P ]] v [[Q]].

Proof. Must-transitions: Let (q, v)
a†d

[[Q]] Q̄. By Def. 6, we have q
[h]a†σ;~y:=~f−−−−−−−→ Q′ with d ∈ Dσ,

v � h[d/ξσ]. Due to P vvp Q (Def. 8), there are P ′, g, ~x, ~e such that p
[g]a†ξσ;~x:=~e−−−−−−−−→ P ′ and

∀d, v, w. h[d/ξσ, w(~y)/~y] =⇒ g[d/ξσ, v(~x)/~x]. Hence, v � g[d/ξσ] and (p, v)
a†d

P̄ := {(p′, v′) |
p′ ∈ P ′, v′(xi) = ei[d/ξ], i = 1, . . . , n}. May-transitions: analogously, but easier due to the
absence of disjunctive transitions.

4



4 Parallel Composition

Interface theories permit one to compose more complex interface speci�cations from simpler
ones by means of a parallel composition operator that represents concurrent interaction between
components. As parallel composition for our ground semantics, we employ EMIA's parallel
composition [8, 9], except that we merge the valuations as follows: given two sets of variables X,
Y and valuations v ∈ DX , w ∈ DY , the merge v · w ∈ DX]Y is de�ned as

v · w(z) =

{
v(x) if z = (0, x),

w(y) if z = (1, y).

The basic intuition behind parallel composition is that components synchronise on shared actions
while foreign action may be interleaved.

De�nition 10 (Parallel Composition of EMIADs with Local Variables). Let P and Q be
EMIADs over variable sets X and Y , respectively. The parallel composition P ⊗Q over the set
of variables X + Y is de�ned by SP⊗Q := {(p, q, v · w) | (p, v) ∈ SP , (q, w) ∈ SQ}, IP⊗Q :=
(IP ∪ IQ) \ OP⊗Q, OP⊗Q := OP ∪ OQ, (p, q, v) ∈ EP⊗Q i� p ∈ EP or q ∈ EQ, (p, q, v) ∈ UP⊗Q
i� p ∈ UP \ EP or q ∈ UQ \ EQ, where the transition relations are de�ned as follows:

1. p
a
P ′ and a /∈ AQ implies (p, q)

a
P ′ × {q} (and symm.)

2. p
a
P ′ and q

a
Q′ implies (p, q)

a
P ′ ×Q′ (and symm.)

3. p
a
p′ and a /∈ AQ implies (p, q)

a
(p′, q) (and symm.)

4. p
a
p′ and q

a
q′ implies (p, q)

a
(p′, q′) (and symm.)

At the abstract level of vpEMIAs, parallel composition is de�ned analogously but with the
following rules:

De�nition 11 (Parallel Composition of vpEMIAs).

1. p
[g];a!σ;~x:=~e−−−−−−−→ P ′ and a /∈ AQ implies (p, q)

[g];a!σ;~x,~y:=~e,~y−−−−−−−−−−→ P ′ × {q} (and symm.)

2. p
[g];a!σ;~x:=~e−−−−−−−→ P ′ and q

[h];a?σ;~y:=~f−−−−−−−−→ Q′ implies (p, q)
[g∧h];a!σ;~x,~y:=~e,~f−−−−−−−−−−−−→ P ′ ×Q′ (and symm.)

3. p
[g];a!σ;~x:=~e−−−−⇒ p′ and a /∈ AQ implies (p, q)

[g];a!σ;~x,~y:=~e,~y−−−−−−⇒ (p′, q) (and symm.)

4. p
[g];a!σ;~x:=~e−−−−⇒ p′ and q

[h];a?σ;~y:=~f−−−−−⇒ q′ implies (p, q)
[g∧h];a!σ;~x,~y:=~e,~f−−−−−−−⇒ (p′, q′) (and symm.)

It is easy to see that interpretation is homomorphic wrt. parallel composition:

Proposition 12 (Homomorphicity of Interpretation). If P and Q are composable vpEMIAs,
then [[P ⊗Q]] = [[P ]]⊗ [[Q]].

Proof sketch. A transition exists in P if g evaluates to true, and in Q if h evaluates to true.
Hence, two transitions synchronise if and only if g∧h evaluates to true, i.e., the abstract parallel
composition corresponds to parallel composition of EMIADs.

As a consequence, parallel composition is compositional.

Proposition 13 (Compositionality). Let P1, P2, Q be vpEMIAs with P1 vvp P2. If P2 ⊗ Q is
de�ned, then P1 ⊗Q is de�ned and P1 ⊗Qvvp P2 ⊗Q.
Proof. Let P1, P2, Q be vpEMIAs such that P2 ⊗ Q is de�ned and P1 vvp P2. By Prop. 9,
[[P1]] v [[P2]]. Prop. 12 and compositionality of parallel composition for EMIA [8, 9] implies
[[P1 ⊗Q]] = [[P1]]⊗ [[Q]] v [[P2]]⊗ [[Q]] = [[P2 ⊗Q]].

5



P : p0 p1 p2τ [g]a!ξσ; ~x := ~e

[[P ]]: (p0, v0) (p1, v1) (p2, vj)
τ a!dj

Figure 2: How to de�ne weak transitions for value-passing interfaces?

5 Discussion and Future Work

With parallel composition and re�nement we only discussed the two core concepts of interface
theories. However, modern interface theories such as EMIA [8, 9] support several additional
features and operators, which we brie�y discuss in this section without giving a formal de�nition,
namely internal transitions, hiding, conjunction, quotient and alphabet extension.

Following the related work [1, 2, 5, 10] we have not included internal transitions so far.
Interface theories supporting internal behaviour include an additional internal action τ and a
hiding operator that permits one to internalise transitions. The re�nement preorder enables one
to abstract from such internal behaviour by applying the simulation rules to weak transitions
a

=⇒ that abstract from leading and trailing τs. The example given in Fig. 2 shows that it is
not obvious how to de�ne weak transitions for value-passing interfaces. The �gure depicts a

vpEMIA P and its EMIAD semantics [[P ]], where we have transitions (p1, v1)
a!dj

(p2, vj) for
some index set J with j ∈ J if and only if v1 � g[dj/ξ] and vj = v1[~e[dj/ξ]/~x]. Standard
de�nitions of weak transitions would permit one to abstract the two transitions in P to a weak

transition p0
[g]a!ξσ; ~x:=~e

========⇒ p2. However, the semantics [[P ]] depends on the valuation v1 of the
intermediate state that is abstracted away in the weak transition. In particular, an arbitrary
change is possible when following an internal transition, e.g., when transitioning from v0 to v1.
It is unclear how to include this additional information in a weak transition. Similarly, when
hiding action a in P , all information about guards and updates of a-transitions is lost in the
resulting speci�cation P/{a}. As a consequence, the EMIAD semantics [[P/{a}]] of this result
is unclear. Due to the complications described in this subsection, we leave hiding and internal
behaviour to future work.

Interface theories support component reuse and synthesis by means of a quotient oper-
ator. Given a global speci�cation G and an already implemented component C, the quo-
tient G // C is the coarsest speci�cation that complements C wrt. parallel composition, i.e.,
X v G // C ⇐⇒ X ⊗ C v G. Holík et al. [10] present a quotient for their value-passing
interface automata. At the current state of our vpEMIA, we did not adapt their work but leave
quotienting for future investigations due to the following reasons. Firstly, Holík et al. do not
prove that their quotient is in fact an adjoint of parallel composition. Secondly, the quotient for
value-passing IA is signi�cantly simpler than for vpEMIA, because vpEMIA supports modalities
and nondeterminism. In particular, nondeterministic quotients supporting internal behaviour
are still an open problem in interface theories [8].

Conjunction is an important operation of interface theories, which permits one to express
that a component shall implement several interfaces: if C is required to implement the interfaces
P and Q, the conjunction P uQ speci�es an overall interface expressing this requirement. Hence,
conjunction must be the greatest lower bound wrt. the re�nement preorder. It is obvious that the
EMIAD semantics is �ner than vpEMIA, i.e., although the interpretation function [[·]] is mono-
tonic, it is not continuous in general. As a consequence, conjunction operators for vpEMIA and
EMIAD do not coincide, and it is debatable whether such an operator may really be considered
as conjunction. For future work, we wish to investigate the relation between vpEMIA re�nement

6



and EMIAD re�nement in order to get a better understanding of conjunction for value-passing.
Alphabet extension enables one to adapt a speci�cation to new operational environments

by permitting the implementation of new features. This is particularly useful in combination
with conjunction for not having to require the conjuncts to share the same alphabets, when
alphabet extension is available. The intuition behind alphabet extension is that a speci�cation is
unspeci�c wrt. new actions but must satisfy the same requirements before and after a new action
is performed. Hence, the alphabet extension of a speci�cation P by a set of new actions A with
A ∩ AP = ∅ is obtained from P by adding a may-loop for each a ∈ A to each state p ∈ SP . In
a value-passing interface theory, such a loop must be added for every type σ and every possible
assignment ~x := ~e; this results in an in�nite number of new loops, which is impractical. Hence, a
di�erent representation of value-passing interfaces is required if one wishes to support alphabet
extension.

In addition, we plan to compare value-passing interface theories with shared memory com-
munication as is employed, e.g., in [1, 2]. Further, we have developed interface automata into a
behavioural type theory [8], providing a di�erent approach to modelling data. Such a behavioural
type theory may also be grounded with a semantics similar to EMIAD and, thus, compared with
value-passing interface theories. From such a comparison, we expect to advance both the value-
passing and the behavioural type theories and to maybe �nd a suitable combination that solves
some of the above mentioned problems.

References

[1] Sebastian S. Bauer, Rolf Hennicker, and Martin Wirsing. Interface theories for concurrency
and data. Theoretical Computer Science, 412(28):3101�3121, 2011.

[2] Sebastian S. Bauer, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej W¡sowski. A
modal speci�cation theory for components with data. In Formal Aspects of Component
Software (FACS), LNCS, pages 61�78. Springer, 2012.

[3] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hennicker. On weak modal
compatibility, re�nement, and the MIO Workbench. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 6015 of LNCS, pages 175�189. Springer,
2010.

[4] Ferenc Bujtor, Sascha Fendrich, Gerald Lüttgen, andWalter Vogler. Nondeterministic modal
interfaces. Theoretical Computer Science, 642:24�53, 2016.

[5] Rance Cleaveland and Daniel Yankelevich. An operational framework for value-passing
processes. In Principles of Programming Languages (POPL), pages 326�338. ACM, 1994.

[6] Luca de Alfaro, Leandro D. da Silva, Marco Faella, Axel Legay, Pritam Roy, and Maria
Sorea. Sociable interfaces. In Frontiers of Combining Systems (FroCoS), volume 3717 of
LNAI, pages 81�105. Springer, 2005.

[7] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Foundations of Software
Engineering (FSE), ESEC/FSE-9, pages 109�120. ACM, 2001.

[8] Sascha Fendrich. Modal Interface Theories for Specifying Component-based Systems. PhD
thesis, Univ. Bamberg, Germany, 2017.

7



[9] Sascha Fendrich and Gerald Lüttgen. A generalised theory of interface automata, component
compatibility and error. In Integrated Formal Methods (iFM), volume 9681 of LNCS, pages
160�175. Springer, 2016.

[10] Luká² Holík, Malte Isberner, and Bengt Jonsson. Mediator synthesis in a component algebra
with data. In Correct System Design, volume 9360 of LNCS, pages 238�259. Springer, 2015.

[11] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
Journal of the ACM, 63(1):9:1�9:67, 2016.

[12] Kim G. Larsen, Ulrik Nyman, and Andrzej W¡sowski. Modal I/O automata for interface
and product line theories. In Programming Languages and Systems (ESOP), volume 4421
of LNCS, pages 64�79. Springer, 2007.

[13] Kim G. Larsen and Bent Thomsen. A modal process logic. In Logic in Computer Science
(LICS), pages 203�210. IEEE, 1988.

[14] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud, Axel Legay, and
Roberto Passerone. A modal interface theory for component-based design. Fundamenta
Informaticae, 108(1-2):119�149, 2011.

8


